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1 1. Introduction

The purpose of this note is to add some insight into the

C ': already known relationships among the three problems mentioned in

I-the title. In considering the shortest path through a network from

some initial vertex to a terminal vertex, we shall confine ourselves

to those cases in which the sum of the lengths of the edges around any

cycle is nonnegative. Most, though not all, algorithms for solving

the shortest path problem make such a presumption.

That the shortest path problem may be posed in the format

of an assignment problem is well known, at least in folklore, and we

will, for the sake of completeness, indicate how this is done. Further,

that transportation problems may be solved by performing a succession

of shortest path problems is also well known, the general principle

being that expounded on Page 121 of the monograph [1]. What we shall
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show is that, for the case of assignment and transportation problems,

one can be even more Atringent in specifying the succession of

shortest path problems to be solved than what the principle expounded

in [1] permits. For example, we shall show that one can do an n x n

assignment problem by solving a succession of shortest path problems

on vertices specified in advance.

2. The Assignment Problem

We assume that the assignment problem is given in the

following form:

We are required to minimize

i, j i i

where

X = (xij)

is a square matrix of order n, with nonnegative entries, and

Now, let us assume that we have a directed graph with vertices

l,...,n+ I, where the distance from i to j is a real number dij,

these numbers satisfy the cycle condition mentioned in the introduction,

and we wish to find the shortest path from vertex I to vertex n + 1.

We set up an assignment problem where the rows correspond to the
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vertices from I to n, the columns correspond to the vertices from

Z to n + 1, and the "c.." are as indicated in the following diagram:

2 3 ... n n+ 1

2 O d..

n 0

The reason is as follows: It should be clear that the given assignment

problem of order n is essentially the same as the assignment

problem of order n + I given in the following diagram:

I 2 ... n n+ I

d.

z O

n 0 0

n+ 1 00 ... g 00

//
/J

/ '
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Now, in order to solve the larger assignment problem, we seek a

permutation matrix of order n + I whose inner product with the

given matrix is as small as possible. In the larger problem,

the minimizing permutation can be expressed as a product of dis-

joint cycles. Further, it is apparent from the large matrix that the

cycle which contains I must return to I from n + 1, thereby

picking out the sum of distances along some path from I to n + I.

Furthermore, all other cycles may be taken to be degenerate

because the condition on the sum of the d.. in any cycle tells us13

that it is optimal to make all other cycles consist of each of one

element, thereby incurring an additional "c.." of 0. Thus, we

see that solving the larger assignment problem is, on the one hand,

equivalent to finding the shortest path and, on the other hand,

equivalent to solving the smaller assignment problem.

Now, we propose to show how this process can be reversed,

in a sense. Suppose we begin with an arbitrary assignment problem

(Z. 1), and let us assume that we have solved the assignment problem

of order r (I < r < n) corresponding to the lower left r x r

sub-matrix. Assume, for the sake of ease of notation, that the

minimizing permutation occurred on the main diagonal of that sub-

matrix. Then, on the n x n matrix C, perform the following

operationst
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Subtract c 1 from the (n-r+l)th row of C,

subtract c n from the (n-r+Z)th row of C,

th
subtract c from the n row of C.

nr

As is well known, this operation does not change the original assign-

ment problem. Furthermore, if we consider the assignment

problem of order r + 1 given by the lower left-hand square of

order r + 1 in the new matrix, it has the appearance of (Z. 2), and

appears to be a shortest path problem on r + 1 vertices. Further-

more, the cycle condition is satisfied; otherwise, we would not have

solved the assignment problem of order r.

In this way, one can solve an assignment problem of order

n, by successively solving shortest path problems of smaller order.

3. Transportation Problems

We now consider the application of a similar idea to trans-

portation problems. We shall assume (with no loss of generality)

that the transportation problem is given in the following form:

Minimize ,•. ci. xi., where C= (c..) is an m x m matrix of given

constants, a 1 , ... am are givcn nonnegative integers, n = Eal, and

X (xij) satisfies xij. > 0, x.j = aij, ix.= 1.
The i i i 1i 13 e 13

The intuitive idea behind this method is to treat each column
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of X successively, and dispose of the unit x.. to be disposed of in

that column in the most economical way. Now, we can certainly

begin in this fashion until, for some i, as many as a. of the
I

columns have been "assigned" to row i. After that, it may turn out

that the cheapest assignment of some subsequent column may also

be in row i, and it will not then be possible to complete the intuitive

scheme. What will replace the intuitive scheme is the solution of a

shortest path problem, involving at most m + 1 points. Then, we

shall show that one can use the solution to this problem to modify

the matrix of C in such a way that it will appear that the selected

elements are still minimal in their respective columns.

To explain this in adequate detail, let us assume that the

first k columns have been disposed of, and let c.. (j = 1,. . . ,k)

be the least (and selected) c.. in its respective column. For ease

of notation, let us also assume that a elements have been selected

in row 1..., a elements have been selected in row t, but fewer

than a. elements have been selected in row i, i = t + 1,... ,m.

We now define a shortest path problem on t + Z vertices. In order

to define the problem, we must give the distances between the points.

First,
doi =ci, k+ for i=1,...,t,

do, t+1I = ?V c i, k+ 1d:?J1
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Further, for t+ I > i> 0, t+ I>j>0, wedefine dij = 0 if row i

has never been selected and d = min - It is understood
ij kýp>l ip cip"

that the only candidates in this minimization occur for those dif-

ferences corresponding to columns p where row i has been

selected. Note that, since all distances not involving the point 0

are positive, the cycle condition is satisfied. Finally, for

t +1> i>0,

d =min min --di, t+lI j>t k>.p>l Cjp Cip,

if row i has ever been selected, otherwise infinity.

Now, determine the shortest path from 0 to the point

t + 1. For most methods of determining the shortest path (see, for

example, pp. 130 ff. of [1]), one derives as well the shortest

distance from 0 to any point. Let no = 0, lt .... #/1t+l be the

shortest distance from 0 to each point. Subtract 1'[1 from the

first row of C,... , subtract IIt from the tth row of C. Subtract

I t+ from the remaining rows of C.

Also, make the following adjustments in selected elements:

If the shortest path from 0 to t + 1 is the path

i0= 0 ilPiz'... ir = t+ 1, and if
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d c
dili0= cil k+1,

d. =C -c ,
l1 ipi2 i2 P , liIp 1I

d c
i Vi 3  i 3P2 -i2pz'

d i =c. -c ~ pir r-l cPr-l ir-lPr-l

then select c ilk+l to represent the k + Ith column, and change

the elements selected in column pit P Pr 0 from

ci ,ci ,..., ci to ci ,ci ,... ,c.
i 1Pl 'P2  r-l r-l 2 1 3PZ JPr-l

respectively.

To prove the validity of this change, we must show that,

after the matrix C has been transformed in the manner described,

and after some of the selected elements have been changed in the

manner described, then the new selected elements are still minimal A
.th

in their columns, and that, for each row i, the i row has been

chosen no more than ai times. The last stipulation is, of course,

obvious, so let us prove the first. To do this, it is sufficient to show

Iis still

that every previously selected element is st minimal in its column,
and that every newly selected element i lominimal in its column.,

To show that every previously selected element is minimal, let us

use the fact that the distances nl must satisfy the inequality

n . + dj. I J.. Suppose c, were selected and any other
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th
element in the p column. We have (**) d.. < c. - c. . In the13 3 p ip

transformed matrix, the new elements in position (i, p) and (j, p)

respectively are c N.- f and c. - II.. We must showar ip 1 jp j

(***) ci - II. < c. - iI.,
-p =jp 3

but
-fl. <c. - fl. +d.. by(*)

Cip i ipnip 3 ij

< c. -fn.+ c. -c. (by(**))
- ip + jp ip

=C. -II..
Jp 3

To show that the new selected elements are also minimal in their

respective columns, let us first consider the (k + 1)th column. It

is clear that the selected element will be 0 after the transformation,

and all other elements will be nonnegative, by virtue of (*) with

i = 0. For the other columns where the selected elements have been

changed, note that (*) and (**) will be equations, when cjp is a

newly selected element, so that (***) will also be an equation.

This completes the discussion.
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